13.1 SATELLITE PROCESSORS 417

Central Processor : Satellite
user
inode file file :
table table desc ~
table Stub > I .. Qrocess_)

™~ descriptor

Figure 13.4. Open Call from a Satellite Process

the open file; the file descriptor returned by the open is the index into the user file
descriptor table of the stub process. Figure 13.4 depicts the results of an open
system call.

For the write system call, the satellite processor formulates a message,
containing a write token, file descriptor and data count. Afterwards, it copies the
data from the satellite process user space and writes it to the communications link.
The stub process decodes the write message, reads the data from the
communications link, and writes it to the appropriate file, following the file
descriptor to the file table entry and inode, all on the central processor. When
done, the stub writes an acknowledgment message to the satellite process, including
the number of bytes successfully written. The read call is similar: The stub
informs the satellite process if it does not return the requested number of bytes,
such as when reading a terminal or a pipe. Both read and write may require the
transmission of multiple data messages across the network, depending on the
amount of data and network packet sizes.

The only system call that needs internal modification on the central processor is
the fork system call. When a process on the central processor executes the fork
system call, the kernel selects a satellite to execute the process and sends a message
to a special server process on the satellite, informing it that it is about to download
a process. Assuming the server accepts the fork request, it does a fork to create a
new satellite process, initializing a process table entry and a u area. The central
processor downloads a copy of the forking process to the satellite processor,
overwriting the address space of the process just creafed there, forks a local stub
process to communicate with the new satellite process, and sends a message to the
satellite processor to initialize the program counter of the new process. The stub
process (or. the central processor) is the child of the forking process; the satellite
process is technically a child of the server process, but it is logically a child of the
process that forked. The server has no logical relationship with the child process
after the fork completes; the only purpose of the server process is to assist-in

418 DISTRIBUTED UNIX SYSTEMS

Central Processor Satellite

e —— i ——

Parent Process)--{------------ < Fork Servcr%)

U . -~

Child Stub Y cess <Ehild Proccs;>

Figure 13.5. Fork on the Central Processor

downloading the child. Because of the tight coupling of the system (the satellite
processors have no autonomy), the satellite and stub processes have the same
process ID. Figure 13.5 illustrates the relationship between the processes: the solid
line shows parent-child relationships and dotted lines depict peer-to-peer
communication lines, either parent process to satellite server or child process to its
stub.

When a process on a satellite processor forks, it sends a message to its stub on
the central processor, which then goes through a similar sequence of operations.
The stub finds a new satellite processor and arranges to download the old process
image: It sends a message to the parent satellite process requesting to read the
process image, and the satellite responds by writing its process image to the
communications link. The stub reads the process image and writes it to the child
satellite. When the satellite is completely downloaded, the stub forks, creating a
child stub on the central processor, and writes the program counter to the child
satellite so that it knows where to start execution. Obvious optimizations can occur
if the child process is assigned to the same satellite as its parent, but this design
allows processes to run on other satellite processors besides the one on which they
were forked. Figure 13.6 depicts the process relationships after the fork. When a
satellite process exits, it sends an exit message to the stub, and the stub exits. The
stub cannot initiate an exi? sequence.

13.1 SATELLITE PROCESSORS : 419

Central Processor

T T —
@m StuD—(Child Stub >
- T

Satellite Satellite

Figure 13.6. Fork on a Satellite Processor

A process must react to signals in the same way that it would react on a
uniprocessor: Either it finishes the system call before it checks for the signal or it
awakens immediately from its sleep and abruptly terminates the system call,
dependmg on the priority at which it sleeps. Because a stub process handles system
calls for a satellite, it must react to signals in concert with the satellite process. If
a signal causes a process on a uniprocessor to finish a system call abnormally, the
stub process should behave the same way. Similarly, if a signal causes a process to
exit, the satellite exits and sends an exit message to the stub process, which exits
naturally.

When a satellite process executes the signal system call, it stores the usual
information in local tables and sends a message to the stub process, informing it
whether it should ignore the particular signal or not. As will be seen, it makes no
difference to the stub whether a process catches a signal or does the default
operation. A process reacts to signals based on the combination of three factors
(see Figure 13.7): whether the signal occurs when the process is in the middle of a
system call, whether the process had called the signal system call to ignore the
signal, or whether the signal originates on the, satellite processor or on another
processor. Let us consider the various possnbllmes

Suppose a satellite process is asleep as the 'stub process executes a system call
on its behalf. If a signal originates on afo‘her processor, the stub sees. the signal

420

DISTRIBUTED UNIX SYSTEMS
algorithm sighandle /* algorithm for handling signals */
input: none
output: none
{
if (clone process)
if (ignoring signal)
return;
if (in middle of system call)
set signal against clone process;
else
send signal message to satellite process;
}
else /* satellite process */
{
/* whether in middle of system call or not */
send signal to clone process;
)
}
algorithm satellite_end_of syscall /* satellite end of system call */
input: none
output: none
{
if (system call interrupted)
send message to satellite telling about interrupt, signal;
else /* system call not interrupted */
send system call reply: include flag indicating arrival
. of signal;
)

Figure 13.7. Handling Signals on Satellite System

hefore the satellite process. There are three cases.

1.

If the stub does not sleep on \an ‘event where it Would wake up on occurrence
of a signal, it completes the system call, sends the appropriate results in a
message to the satellite procebs; and indicates which signal it had received.

If the process was ignoring the 'signal, the stub continues the system call
algorithm without doing a longjmp out of an interruptible sleep — the usual
behavior for ignored signals. When the stub replies to the satellite process, it
does not indicate that it had received a signal.

If the stub process had done a longjmp out of the system cdll because of
receipt of a signal, it informs the satellite process that the system call was
interrupted and indicates the signal number.

13.1 SATELLITE PROCESSORS 421

The satellite process checks the response to see if signals have occurred and, if they
have, handles them in the usual fashion before returning from the system call.
Thus, a process behaves exactly as it would on a uniprocessor: It exits without
returning from the kernel, or it calls a user signal handling function, or it ignores
the signal and returns from the system call.

Satellite Stub

Make read system cail
Send read message to stub
Sleep until stub reply Receive read message
P : read terminal

sleep waiting for input

signal (user hit break key)
wake up
long jump from system call

send reply to satellite:

Y ' interrupted system call
Wake up
Analyze reply
v Take care of signal
Time

Figure 13.8. Interrupt in Middle of a System Call

For example, suppose a satellite process reads a terminal, which is connected to
the central processor, and sleeps while the stub process executes the system call
(Figure 13.8). If a user hits the break key, the stub kernel sends an interrupt
signal to 'the stub process. If the stub was sleeping, waiting for input, it
immediately wakes up and terminates the read call. In its response to the satellite
process, the' stub sets an error code (interrupted from the system call) and the
signal number for interrupt. The satellite process examines the response and,
because the message shows that an interrupt signal was sent, posts the signal to
itself. Before returning from the read call, the satellite kernel checks for signals,
finds the interrupt signal returned by the stub process, and handles it in the usual
way. If the satellite process exits as a result of the interrupt signal, the exit system

422 DISTRIBUTED UNIX SYSTEMS

call takes care of killing the stub process. If it is catching interrupt signals, it calls
the user signal catcher function and later returns from the read call, giving the user
an error return. On the other hand, if the stub process was executing a stat system
call on behalf of the satellite process, it does not terminate the system call on -
receipt of a signal (stat is guaranteed to wake up from all sleeps because it never

" has to wait indefinitely for a resource). The stub completes the system call and

returns the signal number to the satellite process. The satellite process posts the

signal to itself and discovers the signal when it returns from the system call.

If the process had been in the middle of a system call and a signal originates on
the satellite processor, the satellite process has no idea whether the stub will return
soon or sleep indefinitely. The satellite process sends a special message to the stub,
informing it of the occurrence of the signal. The kernel on the central processor
reads the message and sends the signal to the stub, which now reacts as described
in the previous paragraphs: Either it interrupts the system call or it completes it.
The satellite process cannot send the message to the stub directly, because the stub
is in the middle of a system call and is not reading the communications line. The
central processor kernel recognizes the special message and posts the signal to the
appropriate stub.

Repeating the read example explained above, the satellite process has no idea
whether the stub process is waiting for input from a terminal or whether it is doing
other processing. It sends the stub process a signal message: If the stub was asleep
at an interruptible priority, it wakes up immediately and terminates the system call;
otherwise, it completes the system call normally.

Finally, consider the cases where a signal arrives when a process is not in the
middle of a system call. If the signal originates on another processor, the stub
receives the signal first and sends a special signal message to the satellite process,
regardless of how the satellite process wishes to dispose of the signal. The satellite
kernel deciphers the message and sends the signal to the process, which reacts, to'it
in the usual manner. If the signal had originated on the satellite processdr the
satellite process does the wusual processing and does not require special
communication to the stub process.

When a satellite process sends a signal to other processes, it encodes a message
for the kill system call and sends it to the stub, which executes the kill system call
locally. If some processes that should receive the signal are on other satellite
processors, their stebs receive the signal and react as described above.

13.2 THE NEWCASTLE CONNECTION

The previous section explored a tightly coupled system configuration where all file
subsystem calls on a satellite processor are trapped and forwarded to a remcte
(central) processor. This view extends to more loosely coupled systems, where each
machine wants to access files on the othér machines. In a network of personal
computers and work stations, for example, users may want to access files' stored on
a mainframe. The next two sections consider system configurations where ‘local

13.2 423

THE NEWCASTLE CONNECTION .
systems execute all system calls but where calls to the file subsystem may access
files on other machines. ’

These systems use one of two ways to identify remote files. - Some systems insert)
a special character into the path name: The component name preceding the speciat
character identifies a machine, and the remainder of the path name identifies a file
on that machine. For example, the path name

“sftig!/fs1/mjb/rje”

identifies the file “/fs1/mjb/rje” on the machine “sftig”. This file naming scheme
follows the convention established by the uucp program for transferring files
between UNIX systems. Other naming schemes identify remote files by prepending
a special prefix such as

/..Isftig/fs1/mjb/rje

where the “/..” informs the parser that the file reference is remote, and the second
component name gives the remote machine name. The latter naming scheme uses
the syntax of conventional file names on the UNIX system, so user software need
not be converted to cope with “irregularly constructed names” as in the former
scheme (see [Pike 85)).

Clienf ; Server
C Library E%Z P?(t::ss MI:::adSe
(User Level) Request -
locai <_
7 “emote /
Kernel E:;z::t Kernel E::;':;t

Figure 13.9. Formulation of File Service Requests

. The remainder of this section describes a system modeled after the Newcastle
connection, where the kernel does not participate in determining that a file is
remote; instead, the C library functions that provide the kernel interface detect that

424 DISTRIBUTED UNIX SYSTEMS

a file access is remote and take the appropriate action. For both naming
conventions, the C library parses the first components of a path name to determine
that a file is remote. This departs from usual implementations where the library
does not parse path names. Figure 13.9 depicts how requests for file service are
formulated. If a file name is local, the local kernel handles the request in the usual
way. But consider execution of the system call

open(*/../sftig/fs1/mjb/rje/file”, O_RDONLY);

The C library routine for open parses the first two components of the path name
and recognizes that the file should be on the remote machine “sftig”. It maintains
a data structure to keep track of whether the process had previously established
communication to machine “sftig” and, if not, establishes a communications link to
a file server process on the remote machine. When a process makes its first remote
request, the remote server validates the request, mapping user and group ID fields
as necessary, and creates a stub process to act as the agent for the client process.

The stub, executing requests for the client process, should have the same access
rights to files that the client user would have on the remote machine. That is, user
“mjb” should access remote files according to the same permissions that govern
access to local files. Unfortunately, the client user ID for “mjb” may be that of a
different user on the remote machine. Either the system administrators of the
various machines must assign unique identifiers to all users across the network, or
they must assign a transformation of user IDs at the time of request for network
service. Failing the above, the stub process should execute with *‘other”
permissions on the remote machine.

Allowing superuser access permission on remote files is a more ticklish situation.
On the one hand, a client superuser should not have superuser rights on the remote
system, because a user could thereby circumvent security measures on the remote
system. On the other hand, various programs would not work without remote
superuser capabilities. For instance, recall from Chapter 7 that the program
mkdir, which creates a new directory, runs as a setuid program with superuser
permissions. The remote system would not allow a client to create a new directory,
because it would not recognize remote superuser permissions. The problem of
creating a remote directory provides a strong rationale for implementing a mkdir
system call, which would automatically establish all necessary directory links.
Nevertheless, execution of setuid programs that access remote files as superuser is
still a general problem that must be dealt with. Perhaps this problem could best be
solved by providing files with a separate set of access permissions for remote
superuser access; unfortunately, this would require changes to the structure of the
. disk inode to save the new permission fields and would thus cause too much turmoil
in existing systems. ,

When an open call returns successfully, the local library makes an appropriate
notation in a user-level library data structure, including a network address, stub
process ID, stub file descriptor, and other appropriate information. The library
routines for the read and write system calls examine the file descriptor to see if the

13.2 THE NEWCASTLE CONNECTION ‘ 425

original file reference was remote and, if it was, send a message to the stub. The
client process communicates with its stub for all system calls that need service on
that machine. If a process accesses two files on a remote machine, it uses one stub,
but if it accesses files on two remote machines, it uses two stubs: one on each
machine. Similarly, if two processes access a file on a remote machine, they use
two stubs. When executing a system call via a stub, the process formulates a
message including the system call number, path name, and other relevant
information, similar to the type of message described for satellite processors.

Manipulation of the current directory is more complicated. When a process
changes directory to a remote directory, the library sends a message to the stub,
which changes its current directory, and the library remembers that the current
directory is remote. For all path names not beginning with a slash character, the
library sends the path name to the remote machine, where the stub process resolves
the path name from the current directory. If the current directory is local, the
library simply passes the path name to the local kernel. Handling a chroot system
call to a remote directory is similar, but the local kernel does not find out that the
process had done a chroot; strictly speaking, a process can ignore a chroot to a
remote directory, because only the library has a record of it. Exercise 13.9
considers the-case of *“..” over a mount point.

When a process forks, the fork library routine sends each stub a fork message.
The stub processes fork and send their child process IDs to the client parent
process. The client process then invokes the (kernel) fork system call, and on its
return to the child process, the library routine stores the appropriate address
information about the child stub process; the local child process carries on its
dialogue with the remote child stub. This treatment of the fork system call makes)
it easy for the stubs to keep track of open files and current directories. When a
process with remote files exits, the library routine sends a message to the remote
stubs, which exit in response. The exercises explore the exec system call and the
exit system call in greater detail.

The advantage of the Newcastle design is that processes can access remote files
transparently, and no changes need be made to the kernel. However, there are
several disadvantages with this design. System performance may be degraded.
Because of the larger C library, each-process takes up more memory even though it
makes no remote references; the library duplicates kernel functions and takes up
more space. Larger processes take longer to start up in exec and may cause greater
contention for memory, inducing a higher degree of paging and swapping on a
system. Local requests may execute more slowly because they take longer to get
into the kernel, and remote requests may also be slow because they have to do more
processing at user level to send requests across a network. The extra user-level
processing provides more opportunities for context switches, paging, and swapping.
Finally, programs must be recompiled with the new libraries to access remote files;
old programs and vender supplied object modules do not work for remote files
unless recompiled. The scheme described in the next section does not have these
disadvantages.

426 DISTRIBUTED UNIX SYSTEMS

13.3 TRANSPARENT DISTRIBUTED FILE SYSTEMS

The term transparent distribution means that users on one machine can access files
on another machine without realizing that they cross a machine boundary, similar
to crossing a mount point from one file system to another on one machine. Path
names that access files on the remote machine look like path names that access
local files: They contain no distinguishing symbols. Figure 13.10 shows a
configuration where directory “/usr/src” on machine B is mounted on the directory
“/usr/src” on machine A. This configuration is convenient for systems that wish to
share one copy of system source code, conventionally found in “/usr/src”. Users on
machine A can access files on machine B with the regular file name syntax, such as
“/usr/src/cmd/login.c”, and the kernel decides internally whether a file is remote
or local. Users on machine B access local files without being aware that users on
machine A can access them, too, but they cannot access files on machine A. Of
course, other scenarios are possible where all remote systems are mounted at root of
the local system, giving users access to all files on all systems.

Machine A Machine B
/ /
bin usr usr bin etc
login mail bin src src bin
troff vi lib cmd uts
login.c mail.c

Figure 13.10. File Systems after Remote Mount

Because of the analogy between mounting local file systems and providing
access to remote file systems, the mount system call is adapted for remote file
systems. The kernel contains an expanded mount table: When executing a remote

13.3 TRANSPARENT DISTRIBUTED FILE SYSTEMS 427

mount system call, the kernel establishes a network connection to the remote
machine and stores the connection information in the mount table.

An interesting problem arises for path names that include *..” (dot-dot): If a
process changes directory to a remote file system, subsequent use of “..” should
return the process to the local file system rather than allow it to access files above
the remotely mounted directory. Referring to Figure 13.10 again, if a process on
machine A, whose current directory is in the (remote) directory “fusr/src/cmd™,
executes

cd ./../..

its new current directory should be root on machine A, not root on machine B.
Algorithm namei in the remote kernel therefore checks all “..” sequences to see if
the calling process is an agent for a client process, and if so, checks the current
working directory to see if that client treats the directory as the root of a remotely
mounted file system.

Communication with a remote machine takes on one of two forms: remote
procedure call or remote system call. In a remote procedure call design, each
kernel procedure that deals with inodes recognizes whether a particular inode refers
to a remote file and, if it does, sends a message to the remote machine to perform a
specific inode operation. This scheme fits in naturally to the abstract file system
types presented at the end of Chapter 5. Thus, a system call that accesses a remote
file may cause several messages across the network, depending on how many
internal inode operations are involved, with correspondingly higher response time
due to network latency. Carried to an extreme, the remote operations include
manipulation of the inode lock, reference count, and so on. Various optimizations
to the pure model have been implemented to combine several logical inode
operations into a single message and to cache important data (see [Sandberg 85).

Server Client Process/Processor
user
inode inode file file
table Stub . table table desc i’roces;;

/.k \\

/’ il
Y2

Figure 13.11. Opening a Remote File

descriptor

428 DISTRIBUTED UNIX SYSTEMS

Consider a process that opens the remote file “/usr/src/cmd/login.c”, where
“src” is the mount point. As the kernel parses the path name in namei-iget, it
detects that the file is remote and sends a request to the remote machine to return a
locked inode. On receipt of a successful response, the local kernel allocates an in-
core inode that corresponds to the remote file. It then checks file modes for
necessary permissions (permission to read, for instance), by sending another
message to the remote machine. It continues executing the open algorithm as
presented in Chapter 5, sending messages to the remote machine when necessary,
until it completes the algorithm and unlocks the inode. Figure 13.11 illustrates the
relationship of the kernel data structures at conclusion of the open.

For a read system call, the client kernel locks the local inode, sends a message
to lock the remote inode, sends a message to read data, copies the data into local
memory, sends a message to unlock the remote inode, and unlocks the remote
inode. This scheme conforms to the semantics of existing, uniprocessor kernel code,
but the frequency of network use (potentially several times per system call) hurts
performance. Several operations can be combined into one message to reduce
network traffic, however. In the read example, the client can send one “read”
message to the server, which knows that it has to lock and unlock its inode while
doing the read operation. Implementation of remote caches can further reduce
network traffic, as mentioned above, but care must be taken to maintain the
semantics of file system.calls.

In a remote system call design, the local kernel recognizes that a system call
refers to a remote file, as above, and sends the parameters of the system call to the
remote system, which executes the system call and returns the results to the client.
The client machine receives the results of the remote system call and longjmps out
of the system call. Most system calls can be executed with only one network
message, resulting in reasonably good system response, but several kernel operations
do not fit the model. For instance, the kernel creates a “core” file for a process on
receipt of various signals (Chapter 7). Creation of a core file does not correspond
to one system call but entails several inode operations, such as creation of a file,
checking access permissions, and doing several write operations.

For an open system call, the remote system call message consists of the
remainder of the path name (the path name string after the component where the
remote path name was detected) and the various flags. Repeating the earlier
example for a process that opens the file “usr/src/cmd/login.c”, the kernel sends
the path name “cmd/login.c” to the remote machine. The message also contains
identifying information, such as user ID and group ID, needed to determine file
access capabilities on the remote machine. When the remote machine responds
that the open call succeeded, the local kernel allocates a free, local, in-core inode,
marks it “remote,” saves the information needed to identify the remote machine
and the remote inode, and allocates a new file table entry in the usual manner. The
inode on the local machine is a dummy for the real inode on the remote machine,
resulting in the same configuration as the remote procedure call model (Figure
13.11). When a process issues a system call that accesses a remote file by its file

13.3 TRANSPARENT DISTRIBUTED FILE SYSTEMS 429

descriptor, the local kernel recognizes that the file is remote by examining its
(local) inode, formulates a message encapsulating the system call, and sends the
message to the remote machine. The message contains the remote inode index so
that the stub can identify the remote file.

For all system calls, the local kernel may execute special code to take care of
the response and may eventually longjmp out of the system call, because
subsequent local processing, designed for a uniprocessor system, may be irrelevant.
Therefore, the semantits of kernel algorithms may change to support a remote
system call model. However, network traffic is kept to a minimum, allowing system
response to be as fast as possible.

13.4 A TRANSPARENT DISTRIBUTED MODEL WITHOUT STUB
PROCESSES

Use of stub processes in the transparent distributed system model makes it easy for
the remote system to keep track of remote files, but the process table on the remote
system becomes cluttered with stubs that are idle most of the time. Other schemes
use special server processes on the remote machine to handle remote requests (see
[Sandberg 85] and [Cole 85]). The remote system has a pool of server processes
and assigns them temporarily to handle each remote request as it arrives. After
handling a request, the server process reenters the pool and is available for
reassignment to other requests: The server does not remember the user context
(such as user ID) between system calls, because it may handle system calls for
several processes. Consequently, each message from a client process must include
data about its environment, such as UIDs, current directory, disposition of signals,
and so on. Stub processes acquire this data at setup time or during the normal
course of system call execution.

When a process opens a remote file, the remote kernel allocates an inode for
later reference to the file. The local machine has the usual entries in the user file
descriptor table, file table, and inode table, and the inode entry identifies the remote
machine and inode. For system calls that use a file descriptor, like read, the kernel
sends a message that identifies the previously allocated remote inode and passes
over process-specific information, such as the user ID, the maximum allowed file
size, and so on. When the remote machine dispatches a server, communication
with the client process is similar to what was described previously, but the
connection between the client and server exists only for the duration of the system
call.

Handling flow control, signals, and remote devices is more difficult using server
processes instead of stubs. If a remote machine is flooded with requests from many
machines, it must queue the requests if it does not have enough server processes.
This requires a higher-level protocol than the one already provided with the
underlying network. In the stub model, on the other hand, a stub cannot be flooded
with requests, because all transactions with a client are synchronous: A client can
have at most one outstanding request.

430 DISTRIBUTED UNIX SYSTEMS

Handling signals that interrupt a system call is also more complicated with
server processes, because the remote machine must find the correct server process
that is executing the system call. It is even possible that the system call request is
still waiting for service if all server processes were busy. Similarly, race conditions
are possible if the server returns the result of the system call to the calling process,
and the response passes the signal message en route through the network. Each
message must be tagged so that the remote system can locate it and interrupt
server processes, if necessary. Using stub processes, the process servicing the client
system call is automatically identified, and it is easy to determine if it already
finished handling a system call when a signal arrives.

Finally, if a process issues a system call that causes the server process to sleep
indefinitely (reading a remote terminal, for example), the server process cannot
handle other requests, effectively removing it from the server process pool. If many
processes access remote devices and if there is an upper bound on the number of
server processes, this can be a severe bottleneck. This cannot happen when using
stub processes, because the stubs are allocated per client process. Exercise 13.14
explores another problem in using server processes for remote devices.

In spite of the advantages for using process stubs, the need for process table
slots is so critical in practice that most schemes use a pool of service processes to
handle remote requests.

User System Call Library
Newcastle Layer
System Call Handler
. Satellite,
Remote File System Handler<- {Remote System Call
File Subsystem <} ---Remote Procedure Call
Kernel

Figure 13.12. Conceptual Kernel Layer for Remote File Access

13.5 SUMMARY

This chapter has described three schemes for allowing processes to access files
stored on remote machines, treating the remote file systems as an extension of the
local file system. Figure 13.12 illustrates the architectural difference between them.
These systems are distinguished from the multiprocessor systems described in the
previous chapter. because processors do not share physical memory. The satellite

13.5 SUMMARY 431

processor scheme consists of a tightly coupled set of processors that share the file
resources of a central processor. The Newcastle connection gives the appearance of
transparent, remote file access, but remote access is provided by a special
implementation of the C library, not by the kernel. Consequently, programs must
be recompiled to use the Newcastle connection, sometimes a serious drawback.
Remote files are designated by special character sequences that identify the
machine that stores the file, another factor that can limit portability.

A transparent distributed system uses a variation of the mount system call to
give access to a remote file system, much as the usual mount system call extends
the local file system to newly mounted disk units. Inodes on the local system
indicate that they refer to remote files, and the local kernel sends messages to the
remote kernel, describing the kernel algorithm (system call), its parameters, and
the remote inode. Two designs support the remote transparent, distributed
operations: a remote procedure call model, where the messages instruct the remote
machine to execute inode operations, and a remote system call model, where the
messages instruct the remote machine to execute system calls. Finally, the chapter
examined the issues involved with serving remote requests with stub processes or
with server processes from a general pool.

13.6 EXERCISES-

* 1. Describe an implementation of the exir system call on a satellite processor system.
How is this different from the case where a process exits as a result of receipt of an
uncaught signal? How should the kernel dump the “core” file?

2. Processes cannot ignore the SIGKILL signal; describe what happens on a satellite
system when a process receives this signal.

* 3. Describe an implementation of the exec system call on a satellite processor system.

* 4. How should a central processor assign processes to satellite processors to balance the
execution load?

* 5. What happens if a satellite processor does not contain enough memory for the
processes downloaded to it? How should it handle swapping or paging across a
network?

6. Consider a system that allows access to remote file server machines by recognizing
path names by special prefaces. Suppose a process executes

execl(“/../sftig/bin/sh”, “sh”, 0);

The executable image is on the remote machine but should execute on the local
machine. Describe how the local system brings the remote executable file to the local
system to do the exec.

7. If an administrator wishes to add new machines to a Newcastle system, what is the
best way to inform the C library modules?

* 8. The kernel overwrites the address space of a process during exec, including the library
tables used by a Newcastle-style implementation to keep track of remote file
references. The process must still be able to access these files by their old file
descriptors after the exec. Describe an implementation.

432

*9.

* 10.

11.

*12.

*13.

DISTRIBUTED UNIX SYSTEMS

As described in Section 13.2, execution of the exit system call on Newcastle systems
results in a message being sent to the stub process that causes it to exiz. This is done
at the library level. What happens if the local process receives a signal that causes it
to exit from the kernel?

In a Newcastle-style system, where remote files are designated by special prefaces,
how should the system allow a user to use the “..” (parent directory) component to
back up over a remote mount point?

Recall from Chapter 7 that various signals cause a process to dump a core file in its
current directory. What should happen if the current directory is in a remote file
system? What happens on a Newcastle system?

If someone on a remote processor kills all stub or server processes, how should the local
processes hear the good news?

In the transparent distribution system, discuss implementations of l/ink, which has two
possibly remote path names, and exec, which has several internal read operations.
Consider the two designs: remote procedure call and remote system call.

* 14C When a (nonstub) server process accesses a device, it may have to sleep until the

*1s.

device driver wakes it up. Given a fixed number of servers, it is conceivable that a
system would be unable to satisfy any more requests from a local machine, because all
servers are sleeping in a device driver. Devise a scheme that is safe, in that not all
servers can sleep, waiting for device 1/0. A system call should not fail because all
servers are currently busy.

C!icnt A Client B _Cliem C

getty’s

tty server
maching

tty00 ttyOl tty02 tty03 ttyO4 tty0S

Figure 13.13. A Terminal Server Configuration

When a user logs into a system, the terminal line discipline saves information that the
terminal is a control terminal, noting the process group. In this way, processes receive
interrupt signals when a user hits the break key at the terminal. Consider a system
configuration where all terminals are physically connected to one machine, but users
log in logically on other machines (Figure 13.13). Specifically, a system spawns a
getty process for a remote terminal. If a pool of server processes handle remote system
calls, a server sleeps in the driver open procedure, waiting for a connection. When the
server completes the open system call, it goes back into the process pool, severing its

13.6

* 16.

*17.

*18.

*19.

EXERCISES 433

connection to the terminal. If a user hits the break key, how is the interrupt signal
sent to processes in the process group executing on the client machine?

The shared memory feature is inherently a local-machine operation. Logically, it
would be possible for processes on different machines to access a common piece of
physical memory, whether the memory is local or remote. Describe an
implementation.

The demand paging and swapping algorithms examined in Chapter 9 assume the use
of a local swap device. What modifications must be made to these algorithms to
support remote swap devices?

Suppose a remote machine crashes (or the network goes down) and the local network
protocol can recognize this fact. Design recovery schemes for a local system that
makes requests of a remote, server system. Conversely, design recovery schemes for a
server system that loses its connection with client machines.

When a process accesses a remote file, the path name may stretch across several
machines until it is completely resolved. Following the path name
“fusr/src/uts/3b2/0s” for example, “/usr” may be on machine A, the root of machine
B may be mounted on “/usr/src”, and the root of machine C may be mounted on
“fust/src/uts/3b2”. Moving through several machines to get to the final destination is
called multihop. If a direct network connection exists between A and C, however, it is
inefficient to transfer data between the machines via machine B. Describe a design for
multi-hop in the Newcastle and transparent distribution models.

APPENDIX —
SYSTEM CALLS

This appendix contains a brief synopsis of the UNIX system calls. Refer to the
UNIX System V User Programmer’s Manual for a complete specification of these
calls. The specification here is sufficient for reference when reading the various
program examples in the book.

The specified file names are null terminated character strings, whose individual
components are separated by slash characters. All system calls return —1 on error,
.and the external variable errno indicates the specific error. Unless specified
otherwise, system calls return O on success. Some system calls are the entry point
for several functions: this means that the assembly language interface for the
functions is the same. " The list here follows the usual conventions for UNIX system
manuals, but the programmer should not care whether a system call entry point
handles one or many system calls.

access

access(filename, mode)
char *filename;
int mode;

Access checks if the calling process has read, write, or execute permission for the
file, according to the value of mode. The value of mode is a combination of the bit

434

APPENDIX — SYSTEM CALLS 435

patterns 4 (for read), 2 (for write), and 1 (for execute). The real-user ID is
checked instead of the effective user ID.

acct

acct(filename)
char *filename;

Acct enables system accounting if filename is non-null, and disables it otherwise.

alarm

unsigned alarm(seconds)
unsigned seconds;

Alarm schedules the occurrence of an alarm signal for the calling process in the
indicated number of seconds. It returns the amount of time remaining until the
alarm signal at the time of the call.

brk

int brk(end_data_seg)
char *end_data_seg;

Brk sets the highest address of a process’s data region to end_data_seg. Another
function, sbrk, uses this system call entry point and changes the highest address of
a process’s data region according to a-gpecified increment.

chdir

chdir(filename)
char *filename;

Chdir changes the current directory of the calling process to filename.

chmod

chmod(filename, mode)
char *filename;

Chmod changes the access permissions of the indicated file to the specified mode,
which is a combination of the following bits (in octal):

04000 setuid bit
02000 set group ID bit

436 APPENDIX - SYSTEM CALLS

01000 sticky bit

00400 read for owner
00200 write for owner
00100 execute for owner
00040 read for group
00020 write for group
00010 execute for group
00004 read for others
00002 write for others
00001 execute for others

chown

chown (filename, owner, group)
char *filename;
int owner, group;

Chown changes the owner and group of the indicated file to the specified owner and
group IDs.

chroot

chroot (filename)
char *filename;

Chroot sets the private, changed-root of the calling process to filename.

close

close(fildes) |
int fildes;

Close closes a file descriptor obtained from a prior open, creat, dup, pipe, or fcntl
system call, or a file descriptor inherited\ from a fork call.

creat

creat(filename, mode)
char *filename;
int mode;

Creat creates a new file with the indicated file name and access permission modes.
Mode is as specified in access, except that the sticky-bit is cleared and bits set via
umask are cleared. If the file already exists, creat truncates the file. Creat returns
a file descriptor for use in other system calls.

APPENDIX — SYSTEM CALLS 437

dup

dup(fudes)
int fildes;

Dup duplicates the specified file descriptor, returning the lowest available file
descriptor. The old and new file descriptors use the same file pointer and share
other attributes.

exec

execve (filename, argv, envp)
char *filename;

char *argv(];

char *envpl];

Execve executes the program file filename, overlaying the address space of the
executing process. Argv is an array of character strings parameters to the execed
program, and envp is an array of character strings that are the environment of the
new process.

exit
exit(status)
int status;

Exit causes the calling process to terminate, reporting the 8 low-order bits of status
to its waiting parent. The kernel may call exit internally, in response to certain
signals.

fentl

fentl(fildes, cmd, arg)
int fildes, cmd, arg;

Fentl supports a set of miscellaneous operations for open files, identified via the file
descriptor fildes. The interpretatiomr of ¢md and arg is as follows (manifest
constants are defined in file “/usr/include/fcntl.h”):

F_DUPFD retdrn lowest numbered file descriptor > = arg
F_SETFD set close-on-exec flag to low order bit of arg
Gf 1, file is closed in exec)
F_GETFD rcturn value of close-on-exec flag ’
F_SETFL set file status flags (O_NDELAY do not sleep for I/0iand.

438 APPENDIX - SYSTEM CALLS

O_APPEND append written data to end of file)
F_GETFL get file status flags

struct flock _

short | _type; /*F_RDLCK for read lock, F_ WRLCK for write lock,
F_UNLCK for unlock operations */ ‘

short 1_whence; /* lock offset is from beginning of file (0}, Current position of file
pointer (1), or end of file (2) */

long 1 _start; /* byte offset. interpreted according to 1_whence */

long 1_len; /* number of bytes to lock. If 0, lock from 1_start to end of file */

long 1_pid; /* ID of process that locked file */

long 1_sysid; /* sys ID of process that locked file */

F_GETLK get first lock that would prevent application of the lock specified by arg
and overwrite arg. If no such lock exists, change 1_type in arg to
F_UNLCK

F_SETLK lock or unlock the file as specified by arg. Return -1 if unable to lock.

F SETLKW lock or unlock data in a file as specified by arg. Sleep if unable to lock.

Several read locks can overlap in a file. No locks can overlap a write lock.

fork
fork()

Fork creates a new process. The child process is a logical copy of the parent
process, except that the parent’s return value from the fork is the process ID of the
child, and the child’s return value is 0.

getpid
getpid)

Getpid returns the process ID of the calling process. Other calls that use this entry
point are getpgrp, which returns the process group of the calling process, and
getppid, which returns the parent process ID of the calling process.

getuid
getuid 0

Getuid returns the real user ID of the calling process. Other calls that use this
- system call entry point are geteuid, which returns the effective user ID, getgid,
which returns the group ID, and getegid, which returns the effective group ID of
the calling process.

APPENDIX - SYSTEM CALLS 439

ioctl

joctl(fildes, cmd, arg)
int fildes, cmd;

Ioctl does device-specific operations on the open device whose file descriptor is
fildes. Cmd specifies the command to be done on the device, and arg is a
parameter whose type depends on the command.

kill
kill (pid, sig)
int pid, sig;

Kill sends the signal sig to the processes identified by pid.

pid positive send signal to process whose PID is pid.

pid 0 send signal to processes whose process group ID is PID of sender.

pid —1 if effective UID of sender is super user, send signal to all processes
otherwise, send signal to all processes whose real UID equals
effective UID of sender.

pid < —1 send signal to processes whose process group ID is pid.

The effective UID of the sender must be superuser, or the sender’s real or effective
UID must equal the real or effective UID of the receiving processes.

link
link(filenamel, filename2)

char *filenamel, *filename2;

Link gives another name, filename2, to the file filenamel. The file becomes
accessible through either name.

Iseek

Iseek (fildes, offset, origin)
int fildes, origin;
long offset;

Lseek changes the position of the read-write pointer for the file descriptor fildes
and returns the new value. The value of the pointer depends on origin:

0 sect the pointer to offset bytes from the beginning of the file.
1 increment the current value of the pointer by offset.
2 set the pointer to the size of the file plus offset bytes.

440 APPENDIX - SYSTEM CALLS

mknod

mknod (filename, modes, dev)
char *filename;
int mode, dev;

Mknod creates a special file, directory, or FIFO according to the type of modes:

0i0000 FIFO (named pipe)
020000 character special device file
040000 directory

060000 block special device file

The 12 low order bits of modes have the same meaning as described above for
chmod. If the file is block special or character special, dev gives the major and
minor numbers of the device.

mount

mount(specialfile, dir, rwflag)
char *specialfile, *dir;
int rwflag;

Mount mounts the file system specified by specialfile onto the directory dir. If the
low-order bit of rwflag is 1, the file system is mounted read-only.

msgctl

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

msgctl(id, cmd, buf)
int id, cmd;
struct msqid_ds *buf;

Msgctl allows processes to set or query the status of the message queue id, or to

remove the queue, according to the value of cmd. The structure msqid_ds is
defined as follows:

struct ipc_perm {

ushort uid; /* current user id */
ushort gid; /* current group id */
ushort cuid; /* creator user id */
ushort ‘cgid; /* creator group id */
ushort mode; /* access modes */
short padl; - /* used by system */

long pad2; /* used by system */

APPENDIX -~ SYSTEM CALLS 441

struct msqid_ds {

struct ipc_perm msg_perm; /* permission struct */

short pad1{7}; /* used by system */

ushort msg_qgnum; /* number of messages on q */
ushort msg_gbytes; /* max number of bytes on q */
ushort msg_lspid; /* pid of last msgsnd operation */
ushort msg_lrpid; /* pid of last msgrcv operation */
time_t msg_stime; /* last msgsnd time */

time_t msg_rtime; /* last msgrev time */

time_t msg_ctime; /* last change time */

I3
The commands and their meaning are as follows:

IPC STAT Read the message queue header associated with id into buf.
IPC_SET Set the values of msg_perm.uid, msg_perm.gid, msg_perm.mode (9

low-order bits), and msg_gbytes from the corresponding values in buf.
IPC_RMID Remove the message queue for id.

msgget

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

msgget (key, flag)
key _t key;
int flag;

Msgget returns an identifier to a message queue whose name is key. Key can
specify that the returned queuc identifier should refer to a private queue
(IPC_PRIVATE), in which case a new message queue is created. Flag specifies if
the queue should be created (/PC_CREAT), and if creation of the queue should be
exclusive (JPC_EXCL). In the latter case, msgget fails if the queue already exists.

msgsnd and msgrev

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

msgsnd(id, msgp, size, flag)
int id, size, flag;
struct msgbuf *msgp;

442 APPENDIX - SYSTEM CALLS

msgrev(id, msgp, size, type, flag)
int id, size, type, flag;
struct msgbuf *msgmp;

Msgsnd sends a message of size bytes in the buffer msgp to the message queue id.
Msgbuf is defined as

struct msgbuf
long mtype;
char mtext[];

B

If the IPC_NOWAIT bit is off in flag, msgsnd sieeps if the number of bytes on the
message queue exceeds the maximum, or if the number of messages system-wide
exceeds a maximum value. If IPC_NOWAIT is set, msgsnd returns immediately in
these cases. '

Msgrev receives messages from the queue identified by id. If type is 0, the first
message on the queue is received; if positive, the first message of that type is
received; if negative, the first message of the lowest type less than or equal to type
is received. Size indicates the maximum size ‘of message text the user wants to
receive. If MSG_NOERROR is set in flag, the kernel truncates the received
message if its size is larger than size. Otherwise it returns an error. If
IPC_NOWAIT is not set in flag, msgrev sleeps until a message that satisfies type is
sent. If IPC_ NOWAIT is set, it returns immediately. Msgrcv returns the number
of bytes in the message text.

nice

nice(increment)
int increment;

Nice adds increment to the process nice value. A higher nice value gives the
process lower scheduling priorities.

open
#include <fentl.h>

open(filename, flag, mode)
char *filename;
int flag, mode;

Open opens the specified file according to the value of Sflag. The value of flag is a
combination of the following bits (exactly one of the first three bits must be used).

APPENDIX - SYSTEM CALLS 443

O _RDONLY open for reading only.

O WRONLY open for writing only.

O_RDWR open for reading and writing. :

O NDELAY For special devices, open returns without waiting for carrier.
if set. For named pipes, open will return immediately (with an
error if O_WRONLY set), instead of waiting for another process to
open the named pipe. .

O_APPEND causes all writes to append data to the end of the file.

O_CREAT create the file if it does not exist. Mode specifies permissions
as in creat system call. The flag has no meaning if the file
already exists.

O_TRUNC Truncate length of file to 0.

O_EXCL Fail the open call if this bit and O_CREAT are set and file exists.
This is a so-called exclusive open.

Open returns a file descriptor for use in other system calls.

pause
pause()

Pause suspends the execution of the calling process until it receives a signal.

pipe
pipe(fildes)
int fildes[2];

Pipe returns a read and write file descriptor (fildes/0] and fildes[1], respectivelv).
Data is transmitted through a pipe in first-in-first-out order; data cannot be read
twice.

plock
#include <sys/lock.h>
plock(op)
int op;
Plock locks and unlocks process regions in memory according to the value of op:

PROCLOCK lock text and data regions in memory.
TXTLOCK lock text region in memory.
DATLOCK lock data region in memory.
UNLOCK remove locks for all regions.

444 APPENDIX - SYSTEM CALLS

profil

profil(buf, size, offset, scale)
char *buf;
int size, offset, scale;

Profil requests that the kernel give an execution profile of the process. Buf is an
array in the process that accumulates frequency counts of execution in different
addresses of the process. Size is the size of the buf array, offset is the starting
address in the process that should be profiled, and scale is a scaling factor.

ptrace

ptrace(cmd, pid, addr, data)
int cmd, pid, addr, data;

Ptrace allows a process to trace the execution of another process, pid, according to
the value of cmd.

0 enable child for tracing (called by child).
1,2 return word at location addr in traced process pid.
3 return word from offset addr in traced process u area.
4,5 write value of data into location addr in traced process.
6 write value of data into offset addr in u area.
7 cause traced process to resume execution.
8 cause traced process to exit.
9 machine dependent — set bit in PSW for single-steppiug execution.
read
read (fildes, buf, size)
int fildes,
char *buf;
int size;

Read reads up to size bytes from the file fildes into the user buffer buf. Read
returns the number of bytes it read. For special devices and pipes, read returns
immediately if O NDELAY was set in open and no data is available for return.

semct]

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

APPENDIX — SYSTEM CALLS 445

semctl(id, num, cmd, arg)

int id, num, cmd;

union semun {
int val;
struct semid_ds *buf;
ushort *array;

} arg;

Semctl does the specified cmd on the semaphore queue indicated by id.

GETVAL
SETVAL
GETPID

GETNCNT

GETZCNT
GETALL
SETALL
IPC_STAT
IPC_SET

IPC_RMID

return the value of the semaphore whose index is num.

set the value of the semaphore whose index is num to arg.val.

return value of last PID that did a semop on the semaphore

whose index is num.

return number of processes waiting for semaphore value to

become positive.

return number of processes waiting for semaphore value to become 0.
return values of all semaphores into array arg.array.

set values of all semaphores according to array arg.array.

read structure of semaphore header for id into arg.buf.

set sem perm.uid, sem_per.gid, and sem_perm.mode (low-order 9 bits)
according to arg.buf.

remove the semaphores associated with id.

Num gives the number of semaphores in the set to be processed. The structure
semid_ds is defined by:

struct semid_ds {

struct ipc_perm sem_perm; /* permission struct */

int * pad; /* used by system */

ushort sem_nsems; /* number of semaphores in set */
time_t sem_otime; /* last semop operation time */
time_t sem_ctime; /* last change time */

|

The structure ipc_perm is the same as defined in msgctl.

semget

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

semget (key, nsems, flag)

key t key;

int nsems, flag;

446 APPENDIX - SYSTEM CALLS

Semget creates an array of semaphores, corresponding to key. Key and flag take
on the same meaning as they do in msgget.

semop
semop(id, ops, num)
int id, num;
struct sembuf **ops;

Semop does the set of semaphore operations in the array of structures ops, to the

set of semaphores identified by id. Num is the number of entries in ops. The
structure of sembuf is:

struct sembuf {

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* flag */

k

Sem_num specifies the index in the semaphore array for the particular operation,
and sem_flg specifies flags for the operation. The operations sem op for
semaphores are:

negative if sum of semaphore value and sem_op >= 0, add sem_op to
to semaphore value. Otherwise, sleep, as per flag.

positive add sem_op to semaphore value.

zero continue, if semaphore value is 0. Otherwise, sleep as per flag.

If IPC_NOWAIT is set in sem_flg for a particular operation, semop returns
immediately for those occasions it would have slept. If the SEM_UNDO flag is set,
the operation is subtracted from a running sum of such values. When the process
exits, this sum is added to the value of the semaphore. Semop returns the value of
the last semaphore operation in ops at the time of the call.

setpgrp
setpgrp()

Setpgrp sets the process group ID of the calling process to its process ID and
returns the new value.

setuid
setuid (uid)
int uid;

APPENDIX - SYSTEM CALLS

setgid (gid)
int gid;

447

Setuid sets the real and effective user ID of the calling process. If the effective
user ID of the caller is superuser, setuid resets the real and effective user IDs.
Otherwise, if its real user ID equals uid, setuid resets the effective user ID to uid.
Finally, if its saved user ID (set by executing a setuid program 1n exec) equals uid,
setuid resets the effective user ID to uid. Setgid works the same way for real and

effective group IDs.

shimctl

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

shmetl(id, cmd, buf)
int id, cmd;
struct shmid_ds *buf;

Shmetl does various control operations on the shared memory region identifid by
id. The structure shmid_ds is defined by:

struct shmid_ds {
struct ipc_perm °
int
int *
ushort
ushort
ushort
short
time_t
time_t
time_t

J;

The operations are:

shm_perm;
shm_segsz;
padl;
shm_lpid;
shm_cpid;
shm_nattch;
pad2;
shm_atime;
shm_dtime;
shm_ctime;

/* permission struct */

/* size of segment */

/* used by system */

/* pid of last operation */

/* pid of creator */

/* number currently attached */
/* used by system */

/* last attach time */

/* last detach time */

/* last change time */

IPC_STAT read values of shared memory header for id into buf.

IPC SET set shm_perm.uid, shm_perm.gid, and shm perm.mode (9 low-order
bits) in shared memory header according to values in buf.

IPC RMID remove shared memory region for id.

shmget

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

448 APPENDIX — SYSTEM CALLS

shmget (key, size, flag)
key t key;
int size, flag;

Shmget accesses or creates a shared memory region of size bytes. The parameters
key and flag have the same meaning as they do for msgget.

shmop

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

shmat(id, addr, flag)
int id, flag;
char *addr;

shmdt(addr)
char *addr;

Shmat attaches the shared memory region identified by id to the address space of a
process. If addr is 0, the kernel chooses an appropriate address to attach the
region. Otherwise, it attempts to attach the region at the specified address. If the
SHM RND bit is on in flag, the kernel rounds off the address, if necessary. Shmat
returns the address where the region is attached.

Shmdt detaches the shared memory region previously attached at addr.

signal

#include <signal.h>

signal(sig, function)
int sig;
void (*func) ;

Signal allows the calling process to control signal processing. The values of sig are:

SIGHUP hangup

SIGINT interrupt

SIGQUIT quit

SIGILL illegal instruction
SIGTRAP trace trap

SIGIOT IOT instruction
SIGEMT EMT instruction
SIGFPE floating point exception
SIGKILL kill

APPENDIX - SYSTEM CALLS 449

SIGBUS bus error

SIGSEGV segmentation violation
SIGSYS bad argument in system call
SIGPIPE write on a pipe with no reader
SIGALRM alarm

SIGTERM software termination
SIGUSR1 user-defined signal

SIGUSR2 second user-defined signal
SIGCLD death of child

SIGPWR power failure

The interpretation of function is as follows:

SIG_DFL

SIG_IGN
function

stat

default operation. For all signals except SIGPWR and SIGCLD,
process terminates. It creates a core image for signals SIGQUIT,
SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGFPE, SIGBUS, SIGSEGYV, and
SIGSYS.

ignore the occurrence of the signal.

an address of a procedure in the process. The kernel

arranges to call the function with the signal number as argument -
when it returns to user mode. The kernel automatically resets

the value of the signal handler to SIG_DFL for all signals

except SIGILL, SIGTRAP, and SIGPWR. A process cannot catch
SIGKILL signals.

stat(filename, statbuf)
char *filename;
struct stat *statbuf;

fstat (fd, statbuf)

int fd;

struct stat *statbuf;

Stat returns status information about the specified file. Fstat does the same for the
open file whose descriptor is fd. The structure of statbuf is:

struct stat {

dev t st_dev; /* device number for dev containing file */

ino_t st_ino; /* inode number */

ushort st_mode; /* file type (sec mknod) and perms (see chmod) */
short st_nlink; /* number of links for file */

ushort st_uid; /* user ID of file’s owner */
ushort st_gid; /* group ID of file’s group */
dev_t st_rdev; /* major and minor device numbers */

off t st_size; /* size in bytes */

450 APPENDIX -~ SYSTEM CALLS

time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */
I3
stime
stime (tptr)

long *tptr;

Stime sets the system time and date, according to the value pointed to by tptr.
Times are specified in seconds since 00:00:00 January, 1, 1970, GMT.

sync
sync()

Sync flushes file system data in system buffers onto disk.

time

time(tloc)
long *tloc;

Time returns the number of seconds since 00:00:00 January 1, 1970, GMT. If tloc
is not 0, it will contain the return value, too.

times

#include <sys/types.h>
#include <sys/times.h>

times(tbuf)
struct tms *tbuf;

Times returns the elapsed real time in clock ticks from an arbitrary fixed time in
the recent past, and fills tbuf with accounting information:

struct tms {
time t tms_utime; /* CPU time spent in user mode */
time_t tms_stimé; /* CPU time spent in kernel mode */
time_t tms_cutime; /* Sum of tms_utime and tms_cutime of children */
time t tms_sutime; /* Sum of tms_stime and tms_sutime of children */

k;

ulimit

ulimit(cmd, limit)

int cmd;
long limit;

Ulimit allows a process to set various limits according to the value of cmd:

APPENDIX - SYSTEM CALLS

1 return maximum file size (in 512 byte blocks) the process can write
2 set maximum file size to limit.

3 return maximum possible break value (highest possible address in data region).

umask

umask (mask)

int mask;

451

Set the file mode creation mask and return the old value. When creating a file,
permissions are turned off if the corresponding bits in mask are set.

umount

umount (specialfile)
* *char *specialfile;

Unmount the file system in the block special device specialfile.

uname

#include <sys/utsname.h>

uname(name)

struct utsname *name;

Uname returns system-specific information according to the following structure:

struct utsname {

Ghar
char
char
char
char

sysnamel9];
nodenamel9};
release(9];
version[9];
machine[9];

/* name */

/* network node name */

/* system version information */
/* more version infomtién */
/* hardware */

452 APPENDIX - SYSTEM CALLS
unlink

unlink (filename)
char *filename;

Remove the directory entry for the indicated file.

ustat
#include <sys/types.h>
#include <ustat.h>

ustat(dev, ubuf)
int dev;
struct ustat *ubuf;

Ustat returns statistics about the file system identified by dev (the major and minor

" number). The structure ustat is defined by:

struct ustat {

daddr_t f_tfree; /* number of free blocks */
ino_t f_tinode; /* number of free inodes */
char f fname[6]; /* filsys name */

char f fpackl6); /* filsys pack name */

utime

#include <sys/types.h>

utime(filename, times)
char *filename;
struct utimbuf *times;

Utime sets the access and modification times of the specified file according to the
value of times. If O, the current tirhe is used. Otherwise, times points to the
following structure:

struct utimbuf {
time_t axtime; /* access time */
time_t modtime; /* modification time */

);

All times are measured from 00:00:00 January 1, 1970 GMT.

APPENDIX - SYSTEM CALLS 453

wait

wait(wait_stat)
int *wait_stat; .

Wait causes the process to sleep until it discovers a child process that had exited or
a process asleep in trace mode. If wait_stat is not 0, it points to an address that
contains status information on return from the call. Only the 16 low order bits are
written. If wait returns because it found a child process that had exited, the low
order 8 bits are 0, and the high order 8 bits contain the low order 8 bits the child
process had passed as a parameter to exit. If the child exited because of a signal,
the high order 8 bits are 0, and the low order 8 bits contain the signal number. In
addition, bit 0200 is set if core was dumped. If wait returns because it found a
traced process, the high order 8 bits (of the 16 bits) contain the signal number that
caused it to stop, and the low order 8 bits contain octal 0177.

write

write(fd, buf, count)
int fd, count;
char *buf;

Write writes count bytes of data from user address buf to the file whose descriptor
is fd.

BIBLIOGRAPHY

[Babaogiu 81] Babaoglu, O., and W. Joy, “Converting a Swap-Based System to do Paging
in an Architecture Lacking Page-Referenced Bits,” Proceedings of the 8th
Symposium on Operating Systems Principles, ACM Operating Systems Review, Vol.
15(5), Dec. 1981, pp. 78-86.

[Bach 84] Bach, M. J., and S. J. Buroff, “Multiprocessor UNIX Systems,” AT&T Bell
Laboratories Technical Journal, Oct. 1984, Vol 63, No. 8, Part 2, pp. 1733-1750.

[Barak 80] Barak, A. B. and A. Shapir, “UNIX with Satellite Processors,” Software -
Practice and Experience, Vol. 10, 1980, pp. 383-392. .

{Beck 85] Beck, B. and B. Kasten, “VLSI Assist in Building a Multiprocessor UNIX
System,” Proceedings of the USENIX Association Summer Conference, June 1985,
pp. 255-275.

(Berkeley 831 UNIX Programmer's Manual, 4.2 Berkeley Software Distribution, Virtual
VAX-11 Version, Computer Science Division, Department of Electrical Engineering
and Computer Science, University of California at Berkeley, August 1983.

(Birrell 84) Birrell, A.D. and B.J. N¢lson, “Implementing Remote Procedure Calls,” ACM
Transactions on Computer Systems, Vol. 2, No. 1, Feb. 1984, pp. 39-79.

[Bodenstab 84] Bodenstab, D. E., T. F. Houghton, K. A. Keileman, G. Ronkin, and E. P.
Schan, “UNIX Operating System Porting Experiences,” AT&T Bell Laboratories
Technical Journal, Vol. 63, No. 8, Oct. 1984, pp. 1769-1790.

[Bourne 78] Bourne, S. R., “The UNIX Shell, * The Bell System Technical Journal, July-
August 1978, Vol. 57, No. 6, Part 2, pp. 1971-1990.

454

